Statement of Hammett & Edison, Inc., Consulting Engineers

The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained by Sutro Tower, Inc. to evaluate RF exposure levels near the Sutro Tower broadcast site, 1 La Avanzada Street, San Francisco, California, for compliance with appropriate guidelines limiting human exposure to radio frequency electromagnetic fields.

Background Information

Sutro Tower is located near Mt. Sutro in San Francisco, California, and currently supports the transmitting facilities for eleven DTV stations and four FM stations. As part of the final DTV antenna installation project, Sutro Tower agreed to provide the neighborhood associations with measurement data of existing RF exposure levels at 200 locations within a 1,000-foot radius of the tower within two weeks of the activation of any new DTV antenna, or within two weeks of any DTV antenna power increase, or every three years, whichever is earliest. DTV Station KBCW, D45, San Francisco, California, recently upgraded their transmitter facilities and increased their effective radiated power from 400 kW to 1,000 kW.

Prevailing Exposure Standards

The U.S. Congress requires that the Federal Communications Commission (“FCC”) evaluate its actions for possible significant impact on the environment. In Docket 93-62, effective October 15, 1997, the FCC adopted the human exposure limits for field strength and power density recommended in Report No. 86, “Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,” published in 1986 by the Congressionally chartered National Council on Radiation Protection and Measurements (“NCRP”). Separate limits apply for occupational and public exposure conditions, with the latter limits generally five times more restrictive. The more recent standard, developed by the Institute of Electrical and Electronics Engineers and approved as American National Standard ANSI/IEEE C95.1-2006, “Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” includes similar exposure limits. A summary of the FCC’s exposure limits is shown in Figure 1. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

Measurement Procedure

The site was visited by the undersigned engineer and by Mr. Kent Swisher, qualified engineers employed by Hammett & Edison, Inc., during regular business hours on August 9, 2011, a non-holiday weekday. Measurements were made at 208 locations within a 1,000-foot radius of Sutro Tower, as
shown in Figure 2, including all residential streets. Measurements were taken at a typical spacing of about 60–75 feet along the streets, although variations occurred due to topography and street layout. Measurements were made using a Wandel & Goltermann Type EMR-300 Radiation Meter (Serial No. AG-0058) with Type 18 Isotropic Electric Field Probe (Serial No. C-0010), and a Narda Type SRM-3000 Selective Radiation Meter (Serial No. F-0031) with a Type BN-3501 Isotropic Broadband Electric Field Probe (Serial No. F-0041). All meters and probes were under current calibration by manufacturer. The SRM-3000 meter and associated probe are capable of providing results directly as a percent of the applicable FCC public exposure limit. Type 18 probe provides results in volts/meter and is calibrated for exposure of levels down to 0.2 V/m (0.005% of the most restrictive public limit); measurement results using that instrument are expressed as a percentage of the most restrictive FCC limit (0.2 mW/cm²). Both probes are broadband devices, which means that they measure all radio frequency sources, not just the broadcast operations at Sutro Tower.

The specifications of the main DTV and FM antennas, as operating during the measurements, are as follows:

<table>
<thead>
<tr>
<th>Station</th>
<th>Channel</th>
<th>Effective Radiated Power</th>
<th>Antenna Make & Model</th>
<th>Center Height Above Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGO-DT</td>
<td>D07</td>
<td>24 kW</td>
<td>Dielectric TCL-6A7-S</td>
<td>544.2 m</td>
</tr>
<tr>
<td>KOBY-DT</td>
<td>D19</td>
<td>568</td>
<td>Dielectric TFU-30DSC/VP-R 4C190</td>
<td>519.0</td>
</tr>
<tr>
<td>KPIX-DT</td>
<td>D29</td>
<td>1,000</td>
<td>Dielectric TUM-C5SP-14/60H-2-T-R</td>
<td>542.6</td>
</tr>
<tr>
<td>KQED-DT</td>
<td>D30</td>
<td>710</td>
<td>Dielectric TUM20-C5SP-14/60H-2-R-T</td>
<td>542.6</td>
</tr>
<tr>
<td>KMT-DT</td>
<td>D33</td>
<td>480</td>
<td>Dielectric TUM20-C5SP-14/60H-2-R-T</td>
<td>542.6</td>
</tr>
<tr>
<td>KFS-DT</td>
<td>D34</td>
<td>370</td>
<td>Dielectric TFU-26DSC/VP-R P190</td>
<td>524.8</td>
</tr>
<tr>
<td>KRON-DT</td>
<td>D38</td>
<td>1,000</td>
<td>Dielectric TUM-C5SP-14/60H-2-T-R</td>
<td>542.6</td>
</tr>
<tr>
<td>KCNS-DT</td>
<td>D39</td>
<td>1,000</td>
<td>Dielectric TUM20-C5SP-14/60H-2-R-T</td>
<td>542.6</td>
</tr>
<tr>
<td>KCSM-DT</td>
<td>D43</td>
<td>500</td>
<td>Dielectric TUM20-C5SP-14/60H-2-R-T</td>
<td>542.6</td>
</tr>
<tr>
<td>KTVU-DT</td>
<td>D44</td>
<td>1,000</td>
<td>Dielectric TUM-C5SP-14/60H-2-T-R</td>
<td>542.6</td>
</tr>
<tr>
<td>KBCH-DT</td>
<td>D45</td>
<td>1,000</td>
<td>Dielectric TFU-19JSC/VP-R CT150 SP</td>
<td>521.4</td>
</tr>
<tr>
<td>KOIT-FM</td>
<td>243</td>
<td>24</td>
<td>Antenna Concepts ATI6M</td>
<td>511</td>
</tr>
<tr>
<td>KSOL(FM)</td>
<td>255</td>
<td>6.1</td>
<td>ERI LPX-3E-SP</td>
<td>440</td>
</tr>
<tr>
<td>KKSF(FM)</td>
<td>279</td>
<td>7.2</td>
<td>Harris FMH-4AE-HW</td>
<td>492</td>
</tr>
<tr>
<td>KFOG(FM)</td>
<td>283</td>
<td>7.1</td>
<td>Harris FMH-2AE-HW</td>
<td>490</td>
</tr>
</tbody>
</table>

Measurement Results

The maximum RF level measured at any of the 208 locations surrounding Sutro Tower was 6.1% of the most restrictive FCC public exposure limit. A tabulation of measurement results at each of those locations is provided in Figure 3.
Conclusion

It is my professional opinion that the TV and FM broadcast stations at Sutro Tower continue to comply with prevailing standards for limiting public exposure to radio frequency energy.

Figures

In carrying out these engineering studies, the following attached figures were prepared under my direct supervision:

2. Map showing measurement locations.
3. Table showing measurement results.

Rajat Mathur, P.E.

August 26, 2011
The U.S. Congress required (1996 Telecom Act) the Federal Communications Commission (“FCC”) to adopt a nationwide human exposure standard to ensure that its licensees do not, cumulatively, have a significant impact on the environment. The FCC adopted the limits from Report No. 86, “Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,” published in 1986 by the Congressionally chartered National Council on Radiation Protection and Measurements (“NCRP”). Separate limits apply for occupational and public exposure conditions, with the latter limits generally five times more restrictive. The more recent standard, developed by the Institute of Electrical and Electronics Engineers and approved as American National Standard ANSI/IEEE C95.1-2006, “Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” includes similar limits. These limits apply for continuous exposures from all sources and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

As shown in the table and chart below, separate limits apply for occupational and public exposure conditions, with the latter limits (in italics and/or dashed) up to five times more restrictive:

<table>
<thead>
<tr>
<th>Frequency Applicable Range (MHz)</th>
<th>Electromagnetic Fields (f is frequency of emission in MHz)</th>
<th>Electric Field Strength (V/m)</th>
<th>Magnetic Field Strength (A/m)</th>
<th>Equivalent Far-Field Power Density (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 – 1.34</td>
<td>614</td>
<td>1.63</td>
<td>1.63</td>
<td>100</td>
</tr>
<tr>
<td>1.34 – 3.0</td>
<td>614</td>
<td>1.63</td>
<td>2.19/f</td>
<td>100/ f²</td>
</tr>
<tr>
<td>3.0 – 30</td>
<td>1842/f</td>
<td>4.89/f</td>
<td>2.19/f</td>
<td>900/ f²/ f²</td>
</tr>
<tr>
<td>30 – 300</td>
<td>61.4</td>
<td>0.163</td>
<td>0.0729</td>
<td>1.0</td>
</tr>
<tr>
<td>300 – 1,500</td>
<td>3.54√f</td>
<td>1.59√f</td>
<td>√f/106</td>
<td>f/300</td>
</tr>
<tr>
<td>1,500 – 100,000</td>
<td>137</td>
<td>0.364</td>
<td>0.163</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Higher levels are allowed for short periods of time, such that total exposure levels averaged over six or thirty minutes, for occupational or public settings, respectively, do not exceed the limits, and higher levels also are allowed for exposures to small areas, such that the spatially averaged levels do not exceed the limits. However, neither of these allowances is incorporated in the conservative calculation formulas in the FCC Office of Engineering and Technology Bulletin No. 65 (August 1997) for projecting field levels. Hammett & Edison has built those formulas into a proprietary program that calculates, at each location on an arbitrary rectangular grid, the total expected power density from any number of individual radio sources. The program allows for the description of buildings and uneven terrain, if required to obtain more accurate projections.
Purple circle represents 1000-foot radius from Sutro Tower. **Purple dots** denote locations for measurement results in Figure 3.
Measured Power Density Levels
August 9, 2011

<table>
<thead>
<tr>
<th>Location</th>
<th>Percent</th>
<th>FCC Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Percent</th>
<th>FCC Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>2.7†</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>2.0†</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

* Expressed as percent of most restrictive FCC limit of 0.2 mW/cm², except as noted.
† Expressed as percent of applicable public limit for frequencies involved; SRM-3000 meter and associated probe used.

Sutro Tower, Inc. • San Francisco, California

HAMMETT & EDISON, INC.
CONSULTING ENGINEERS
SAN FRANCISCO

Sutro510
Figure 3A
Measured Power Density Levels

August 9, 2011

<table>
<thead>
<tr>
<th>Location</th>
<th>Percent</th>
<th>FCC Limit*</th>
<th>Location</th>
<th>Percent</th>
<th>FCC Limit*</th>
<th>Location</th>
<th>Percent</th>
<th>FCC Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>0.83</td>
<td></td>
<td>151</td>
<td>0.76</td>
<td></td>
<td>181</td>
<td>6.1†</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>1.1</td>
<td></td>
<td>152</td>
<td>0.64</td>
<td></td>
<td>182</td>
<td>3.8†</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>1.4</td>
<td></td>
<td>153</td>
<td>0.97</td>
<td></td>
<td>183</td>
<td>2.3†</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>1.0</td>
<td></td>
<td>154</td>
<td>0.53</td>
<td></td>
<td>184</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1.9</td>
<td></td>
<td>155</td>
<td>0.76</td>
<td></td>
<td>185</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>1.4</td>
<td></td>
<td>156</td>
<td>1.2</td>
<td></td>
<td>186</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>1.5</td>
<td></td>
<td>157</td>
<td>0.76</td>
<td></td>
<td>187</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>1.9</td>
<td></td>
<td>158</td>
<td>0.97</td>
<td></td>
<td>188</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>2.7</td>
<td></td>
<td>159</td>
<td>0.90</td>
<td></td>
<td>189</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>2.1</td>
<td></td>
<td>160</td>
<td>0.90</td>
<td></td>
<td>190</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>1.4</td>
<td></td>
<td>161</td>
<td>1.7</td>
<td></td>
<td>191</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1.9</td>
<td></td>
<td>162</td>
<td>0.53</td>
<td></td>
<td>192</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>3.6</td>
<td></td>
<td>163</td>
<td>4.0</td>
<td></td>
<td>193</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>1.4</td>
<td></td>
<td>164</td>
<td>3.1</td>
<td></td>
<td>194</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>3.7†</td>
<td></td>
<td>165</td>
<td>0.64</td>
<td></td>
<td>195</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>6.1†</td>
<td></td>
<td>166</td>
<td>0.90</td>
<td></td>
<td>196</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>2.6†</td>
<td></td>
<td>167</td>
<td>1.3</td>
<td></td>
<td>197</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>2.7</td>
<td></td>
<td>168</td>
<td>1.8</td>
<td></td>
<td>198</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>3.7</td>
<td></td>
<td>169</td>
<td>1.5</td>
<td></td>
<td>199</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>2.0</td>
<td></td>
<td>170</td>
<td>2.8</td>
<td></td>
<td>200</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>1.4</td>
<td></td>
<td>171</td>
<td>3.9</td>
<td></td>
<td>201</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>0.16</td>
<td></td>
<td>172</td>
<td>2.5†</td>
<td></td>
<td>202</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>1.3</td>
<td></td>
<td>173</td>
<td>2.6</td>
<td></td>
<td>203</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>0.97</td>
<td></td>
<td>174</td>
<td>2.8</td>
<td></td>
<td>204</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>0.64</td>
<td></td>
<td>175</td>
<td>1.9</td>
<td></td>
<td>205</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>0.43</td>
<td></td>
<td>176</td>
<td>1.3</td>
<td></td>
<td>206</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>0.64</td>
<td></td>
<td>177</td>
<td>2.6</td>
<td></td>
<td>207</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>1.2</td>
<td></td>
<td>178</td>
<td>3.1</td>
<td></td>
<td>208</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>0.43</td>
<td></td>
<td>179</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.34</td>
<td></td>
<td>180</td>
<td>2.4†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Expressed as percent of most restrictive FCC limit of 0.2 mW/cm², except as noted.
† Expressed as percent of applicable public limit for frequencies involved; SRM-3000 meter and associated probe used.